Logic, Paradox, and Truth

Jc Beall

University of Connecticut
2009 Daniel Taylor Fellow, University of Otago

~ Philosophy @ Dunedin ~
28 July 2009
AIMS

- Logic: what is it about?
Aims

- Logic: what is it about?
- Logical Theory: what sorts of things does a logical theory tell us?
AIMS

- Logic: what is it about?
- Logical Theory: what sorts of things does a logical theory tell us?
- Challenges to logical theory: what challenges, if any, confront (apparent) logical laws/rules?
AIMS

- Logic: what is it about?
- Logical Theory: what sorts of things does a logical theory tell us?
- Challenges to logical theory: what challenges, if any, confront (apparent) logical laws/rules?
- Concluding reflections...
LOGICAL TRUTH AND RELATIONS

Logic concerns (logical) implication among statements. Example: 1. All birds have wings. 2. Kiwis are birds. 3. Kiwis have wings. The relation between (1) and (2) together and (3) is logical implication: there's no way for (1) and (2) to be true without (3) being true – and this due to logical words. Some key logical words are 'All', 'there exists', 'is' (exemplifies), 'not', and more.
LOGICAL TRUTH AND RELATIONS

- Logic concerns (logical) implication among statements.
Logic concerns (logical) implication among statements. Example:

1. All birds have wings.
2. Kiwis are birds.
3. Kiwis have wings.

The relation between (1) and (2) together and (3) is logical implication: there’s no way for (1) and (2) to be true without (3) being true –
Logical Truth and Relations

- Logic concerns (logical) implication among statements.
 Example:
 1. All birds have wings.
 2. Kiwis are birds.
 3. Kiwis have wings.

 The relation between (1) and (2) together and (3) is logical implication: there’s no way for (1) and (2) to be true without (3) being true – and this due to logical words.
Logical Truth and Relations

- Logic concerns (logical) implication among statements. Example:
 1. All birds have wings.
 2. Kiwis are birds.
 3. Kiwis have wings.

The relation between (1) and (2) together and (3) is logical implication: there’s no way for (1) and (2) to be true without (3) being true – and this due to logical words.

- Some key logical words are ‘All’, ‘there exists’, ‘is’ (exemplifies), ‘not’, and more.
Logical Truth (and General Laws)

Given a stock of logical words, we also get logical truths: true statements that are true merely in virtue of the logical words involved.

Examples (of generalizations of logical truths):

▶ LNC: No statement is both true and not true.
▶ LEM: Every statement is either true or not true.
▶ Identity: If a statement is true then it is true.
▶ Double negation: If a statement is true, then it is not not true (and vice versa).
▶ . . . and there are many others.
Logical Truth (and General Laws)

Given a stock of logical words, we also get logical truths: true statements that are true merely in virtue of the logical words involved.
Logical Truth (and General Laws)

Given a stock of logical words, we also get logical truths: true statements that are true merely in virtue of the logical words involved. Examples (of generalizations of logical truths):

- LNC: No statement is both true and not true.
- LEM: Every statement is either true or not true.
- Identity: If a statement is true then it is true.
- Double negation: If a statement is true, then it is not not true (and vice versa).

...and there are many others.
Logical Truth (and General Laws)

Given a stock of logical words, we also get logical truths: true statements that are true merely in virtue of the logical words involved. Examples (of generalizations of logical truths):

- LNC: No statement is both true and not true.
Logical Truth (and General Laws)

Given a stock of logical words, we also get *logical truths*: true statements that are true merely in virtue of the logical words involved. Examples (of generalizations of logical truths):

- **LNC**: No statement is both true and not true.
- **LEM**: Every statement is either true or not true.
Logical Truth (and General Laws)

Given a stock of logical words, we also get logical truths: true statements that are true merely in virtue of the logical words involved. Examples (of generalizations of logical truths):

- LNC: No statement is both true and not true.
- LEM: Every statement is either true or not true.
- Identity: If a statement is true then it is true.
Logical Truth (and General Laws)

Given a stock of logical words, we also get logical truths: true statements that are true merely in virtue of the logical words involved. Examples (of generalizations of logical truths):

- **LNC**: No statement is both true and not true.
- **LEM**: Every statement is either true or not true.
- **Identity**: If a statement is true then it is true.
- **Double negation**: If a statement is true, then it is not not true (and vice versa).
Logical Truth (and General Laws)

Given a stock of logical words, we also get logical truths: true statements that are true merely in virtue of the logical words involved. Examples (of generalizations of logical truths):

- LNC: No statement is both true and not true.
- LEM: Every statement is either true or not true.
- Identity: If a statement is true then it is true.
- Double negation: If a statement is true, then it is not not true (and vice versa).
- …and there are many others.
SUMMARY: LOGIC

Logical implication is an airtight truth-related connection between statements that holds merely in virtue of logical words.

Logical truths are statements that are true merely in virtue of logical words.

Among currently recognized logical words are 'not', 'or', 'and', 'if...then', 'all', 'there exists', and others.

In general: logic is about certain properties and relations that hold among statements in virtue of basic 'logical words'.
SUMMARY: LOGIC

- *Logical implication* is an airtight truth-related connection between statements that holds merely in virtue of logical words.
SUMMARY: LOGIC

- *Logical implication* is an airtight truth-related connection between statements that holds merely in virtue of logical words.

- *Logical truths* are statements that are true merely in virtue of logical words.
Summary: Logic

- *Logical implication* is an airtight truth-related connection between statements that holds merely in virtue of logical words.
- *Logical truths* are statements that are true merely in virtue of logical words.
- Among currently recognized logical words are ‘not’, ‘or’, ‘and’, ‘if...then’, ‘all’, ‘there exists’, and others.
SUMMARY: LOGIC

- *Logical implication* is an airtight truth-related connection between statements that holds merely in virtue of logical words.

- *Logical truths* are statements that are true merely in virtue of logical words.

- Among currently recognized logical words are ‘not’, ‘or’, ‘and’, ‘if... then’, ‘all’, ‘there exists’, and others.

- In general: logic is about certain properties and relations that hold among statements in virtue of basic ‘logical words’.
LOGICAL THEORIES: LAWS AND RULES
Logical Theories: laws and rules

What sort of things do logical theories tell us?
Logical Theories: laws and rules

What sort of things do logical theories tell us?

▶ Logical Laws: general claims all instances of which are logically true. [Examples above.]
Logical Theories: laws and rules

What sort of things do logical theories tell us?

▶ Logical Laws: general claims all instances of which are logically true. [Examples above.]

▶ Logical Rules: claims about ‘logical steps’ (implication); claims about airtight truth-related steps. [Examples.]
Logical Theories: laws and rules

What sort of things do logical theories tell us?

- **Logical Laws**: general claims all instances of which are logically true. [Examples above.]

- **Logical Rules**: claims about ‘logical steps’ (implication); claims about airtight truth-related steps. [Examples.]

〈NB: The form that such laws/rules take in contemporary logical theory are often rather mathematical and symbol-ridden. We shall avoid all that here.〉
Challenge to LNC?
Challenge to LNC?

Law of Non-Contradiction (LNC):
No statement is both true and not true.
CHALLENGE TO LNC?

Law of Non-Contradiction (LNC):
No statement is both true and not true.

✓ The ticked statement is not true.
Challenge to LEM?

Law of Excluded Middle (LEM): Every statement is either true or not true. ✓✓

The double-ticked statement is true.
Challenge to LEM?

Law of Excluded Middle (LEM):
Every statement is either true or not true.
CHALLENGE TO LEM?

Law of Excluded Middle (LEM):
Every statement is either true or not true.

✓✓ The double-ticked statement is true.
CHALLENGE TO EXISTENTIAL GENERALIZATION?
Challenge to Existential Generalization?

Rule of Existential Generalization (EG):
From So-n-so is G infer There exists an object that is G.
CHALLENGE TO EXISTENTIAL GENERALIZATION?

Rule of Existential Generalization (EG):
From *So-n-so is G* infer *There exists an object that is G.*

Harry Potter is fictional.
Logical theories attempt to tell us the logical foundations of reality: logical laws and rules.

Even the most obvious logical laws and rules have apparent challenges.

We've looked at apparent challenges to two laws (LNC and LEM) and one rule (EG).

How (if at all) we should adjust our logical theory is not easy – and an ongoing issue.

Ultimately, logical theory is much like any other theory: it is subject to the pressures of reality – including the weird, limiting pockets thereof.

My own view is that there is exactly one true logical theory (even if many logics), but the quest for it remains open.
SUMMARY AND CLOSING REMARK

▶ Logical theories attempt to tell us the logical foundations of reality: logical laws and rules.
SUMMARY AND CLOSING REMARK

- Logical theories attempt to tell us the logical foundations of reality: logical laws and rules.
- Even the most obvious logical laws and rules have apparent challenges.
SUMMARY AND CLOSING REMARK

- Logical theories attempt to tell us the logical foundations of reality: logical laws and rules.
- Even the most obvious logical laws and rules have apparent challenges.
- We’ve looked at apparent challenges to two laws (LNC and LEM) and one rule (EG).
SUMMARY AND CLOSING REMARK

- Logical theories attempt to tell us the logical foundations of reality: logical laws and rules.
- Even the most obvious logical laws and rules have apparent challenges.
- We’ve looked at apparent challenges to two laws (LNC and LEM) and one rule (EG).
- How (if at all) we should adjust our logical theory is not easy – and an ongoing issue.
SUMMARY AND CLOSING REMARK

▶ Logical theories attempt to tell us the logical foundations of reality: logical laws and rules.
▶ Even the most obvious logical laws and rules have apparent challenges.
▶ We’ve looked at apparent challenges to two laws (LNC and LEM) and one rule (EG).
▶ How (if at all) we should adjust our logical theory is not easy – and an ongoing issue.
▶ Ultimately, logical theory is much like any other theory: it is subject to the pressures of reality –
Summary and closing remark

▶ Logical theories attempt to tell us the logical foundations of reality: logical laws and rules.
▶ Even the most obvious logical laws and rules have apparent challenges.
▶ We’ve looked at apparent challenges to two laws (LNC and LEM) and one rule (EG).
▶ How (if at all) we should adjust our logical theory is not easy – and an ongoing issue.
▶ Ultimately, logical theory is much like any other theory: it is subject to the pressures of reality – including the weird, limiting pockets thereof.
SUMMARY AND CLOSING REMARK

▶ Logical theories attempt to tell us the logical foundations of reality: logical laws and rules.
▶ Even the most obvious logical laws and rules have apparent challenges.
▶ We’ve looked at apparent challenges to two laws (LNC and LEM) and one rule (EG).
▶ How (if at all) we should adjust our logical theory is not easy – and an ongoing issue.
▶ Ultimately, logical theory is much like any other theory: it is subject to the pressures of reality – including the weird, limiting pockets thereof.
▶ My own view is that there is exactly one true logical theory (even if many logics), but the quest for it remains open...
Like the quest for the one true logical theory, *discussion period* is now open...